Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture.

نویسندگان

  • Kouta Mayanagi
  • Shinichi Kiyonari
  • Mihoko Saito
  • Tsuyoshi Shirai
  • Yoshizumi Ishino
  • Kosuke Morikawa
چکیده

The 3D structure of the ternary complex, consisting of DNA ligase, the proliferating cell nuclear antigen (PCNA) clamp, and DNA, was investigated by single-particle analysis. This report presents the structural view, where the crescent-shaped DNA ligase with 3 distinct domains surrounds the central DNA duplex, encircled by the closed PCNA ring, thus forming a double-layer structure with dual contacts between the 2 proteins. The relative orientations of the DNA ligase domains, which remarkably differ from those of the known crystal structures, suggest that a large domain rearrangement occurs upon ternary complex formation. A second contact was found between the PCNA ring and the middle adenylation domain of the DNA ligase. Notably, the map revealed a substantial DNA tilt from the PCNA ring axis. This structure allows us to propose a switching mechanism for the replication factors operating on the PCNA ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence o...

متن کامل

Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex

Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SEL...

متن کامل

PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins

In DNA replication, the leading strand is synthesized continuously, but lagging strand synthesis requires the complex, discontinuous synthesis of Okazaki fragments, and their subsequent joining. We have used a combination of in situ extraction and dual color photobleaching to compare the dynamic properties of three proteins essential for lagging strand synthesis: the polymerase clamp proliferat...

متن کامل

DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories.

In mammalian cells, DNA replication occurs at discrete nuclear sites termed replication factories. Here we demonstrate that DNA ligase I and the large subunit of replication factor C (RF-C p140) have a homologous sequence of approximately 20 amino acids at their N-termini that functions as a replication factory targeting sequence (RFTS). This motif consists of two boxes: box 1 contains the sequ...

متن کامل

The architecture of an Okazaki fragment-processing holoenzyme from the archaeon Sulfolobus solfataricus.

DNA replication on the lagging strand occurs via the synthesis and maturation of Okazaki fragments. In archaea and eukaryotes, the enzymatic activities required for this process are supplied by a replicative DNA polymerase, Flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). These factors interact with the sliding clamp PCNA (proliferating cell nuclear antigen) providing a potential means of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 12  شماره 

صفحات  -

تاریخ انتشار 2009